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2Carlberg and Farhat POD-Based Iterative Solver

Motivation

Aero-structural 
optimization of 
ARW-2 wing

!  We propose an adaptive model

! Accurately and inexpensively approximates performance

! Leads to fast design optimization

(courtesy Manuel Barcelos)

!  Structural design optimization via computer simulation

! Widely used in industry

! Often very expensive due to repeated simulation
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!  Design optimization: 

Carlberg and Farhat POD-Based Iterative Solver

Motivation

maximize        Performance 

by changing     Design variables 

subject to       Constraints

!Simulation-based design optimization:

High-fidelity finite element model of the structure.

maximize    

by changing 

subject to   

J(u, µ)

c(u, µ) = 0, d(u, µ) ≥ 0
K(µ)u = f(µ)

µ

stiffness matrix,K(µ) displacement,u load vectorf(µ)
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Simulation-based design

! Current Approach #1

! Embed high-fidelity model within a numerical optimization 

algorithm

Prohibitively expensive for large-scale structures

POD-Based Iterative Solver

high-fidelity 
simulation

µ1

µ2

initial
design

optimal 
design



µ1

J
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Surrogate-based optimization

! Current Approach #2

! Optimize with a surrogate model

1. Mimics the high-fidelity model

2. Inexpensive to evaluate

! Inaccurate away from calibration points

High-fidelity response

Surrogate response

Calibration point

POD-Based Iterative Solver
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SBO Problem

surrogate
evaluation

µ1

µ2

initial
design

final 
design

high-fidelity 
simulation

POD-Based Iterative Solver

Goal: directly control approximation errors    lower overall cost

! Global inaccuracy of surrogate leads to many costly calibrations

! Trust-region model management (Alexandrov et al., 1998)

1. Calibrate surrogate by high-fidelity simulation

2. Optimize within a trust region using the surrogate

3. Grow/shrink trust region depending on surrogate accuracy



! Use surrogate as acceleration tool for high-fidelity simulation

! Directly control the error (high-fidelity tolerance)

! Global accuracy: fewer high-fidelity simulations

! Improve accuracy as optimum is approached

7Carlberg and Farhat

Adaptive reduced-order model

POD-Based Iterative Solver

High-fidelity response

µ1

J
Surrogate response

Calibration point

Adaptive ROM response
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Gradient-based structural optimization

!  At each optimization iteration   , solve

K(µ(k))u = f(µ(k))1) State equations

2) Sensitivity equations

K(µ(k))
du

dµi
=

∂f

∂µi

∣∣∣∣
µ(k)

−
∂K

∂µi

∣∣∣∣
µ(k)

u

k

POD-Based Iterative Solver

or

! Direct S.A.  For i = 1, . . . , nvars

! Adjoint S.A.  For i = 1, . . . , nc + 1

K(µ(k))ψi =
∂γi

∂u

∣∣∣∣
T

µ(k)

γi =

{
ci, i = 1, . . . , nc

J, i = nc + 1
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Repeated analyses formulation

!  For                       and                             , solve

!                large, sparse, symmetric positive definite (SPD)

k = 1, . . . , K i = 1, . . . , nRHS

K(µ(k))ui = fi(µ(k))

POD-Based Iterative Solver

!  Iteratively solve by preconditioned conjugate gradient (PCG)

! For                            (until convergence)

!        Krylov subspace of dimension

! Final solution                  satisfies specified solver tolerance
!  

!Approach: accelerate PCG convergence using ROM concepts 

K(µ(k))

m = 1, . . . , M

ũi ∈ KM

Km m

minimize
x∈Km

1
2

xT K(µ(k))x − xT fi(µ(k))



!  Compute approximations      satisfying controlled tolerance

!  Increase accuracy (            ) as the optimum is approached

!  Approximations lie in the sum of two subspaces

!     proper orthogonal decomposition (POD) subspace

!  Compute      very efficiently by a novel augmented conjugate 
gradient (CG) iterative method

10Carlberg and Farhat

Adaptive ROM Approach

‖fi(µ(k)) − K(µ(k))ũi‖2

‖fi(µ(k)‖2
< εk

εk → 0

P
ũi

ũi εk

Solve            for            k = 1, . . . , K i = 1, . . . , nRHSK(µ(k))ui = fi(µ(k)) ,

POD-Based Iterative Solver

ũi ∈ P + KM



!  Optimal representation of “snapshot” data
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Proper Orthogonal Decomposition

POD-Based Iterative Solver

POD rank 50 approximation POD rank 10 approximation Original: rank 200



!  Optimal representation of “snapshot” data

!  Here, approximately minimize the projection error of the 

solution at a target configuration      near

1. Snapshots                :  components of solution

! Solution at previous configurations

! Sensitivity derivatives (Carlberg and Farhat, 2008)

2. Weights                 estimate the solution

! Radial basis functions & Taylor expansion coefficients

!  Optimal representation of “snapshot” data

!  Here, approximately minimize the projection error of the 

solution at a target configuration     near

1. Snapshots                :  

2. Weights               :

3. POD norm:

11Carlberg and Farhat

Proper Orthogonal Decomposition

µ̄

‖x‖K(µ̄) ≡
√

xT K(µ̄)x

µ(k)

{wj}nw
j=1

{γj}nw
j=1

u(µ̄) ≈ uest (µ̄) =
nw∑

j=1

γjwj

POD-Based Iterative Solver

u(µ̄)



1. Optimal ordering

! First     POD basis vectors span an optimal        

       -dimensional subspace

!  Compute one POD basis for each RHS

2.           -orthonormality

!                                           for     near        

K(µ̄)
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POD Bases and Key Properties

i = 1, . . . , nRHS

n

n

Φi(n)T K(µ)Φi(n) ≈ I µ µ̄

!  Key properties

POD-Based Iterative Solver

Φi(n) ≡
[
φi

1, . . . , φi
n

]

Φi(n)T K(µ̄)Φi(n) = I
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POD-Based Iterative Solver

! Three stages to compute approximation      at        near

1. Directly solve     -dimensional reduced equations (     small)

! Accurate (Property 1) and low cost (     small)                          

2. Iteratively solve     -dimensional reduced equations (               )

! Use augmented CG without forming reduced matrix

! More accurate (Property 1) and low cost (Property 2)

n1

ũi µ(k) µ̄

Φi(n1)T K(µ(k))Φi(n1)û = Φi(n1)T fi(µ(k)),
ũi,1 = Φ(n1)û

n2

n1

n1

POD-Based Iterative Solver

Φi(n2)T K(µ(k))Φi(n2)û = Φi(n2)T
(
fi(µ(k)) − K(µ(k))ũi,1

)
,

ũi,2 = ũi,1 + Φi(n2)û

n2 ! n1
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POD-Based Iterative Solver

3. Iteratively solve full state equations to specified tolerance

! Use augmented PCG (Farhat et al., 1994)

! Provides “adaptivity” to meet any specified tolerance

! Preconditioner: incomplete Cholesky, previous stiffness (Kirsch, 2002)                    

! Multiple-RHS (solving state equations + sensitivity analysis)

! Sequentially execute Stages 1-3 for

! Stage 1 approximation space includes search directions from 

    all previous RHS

εk

K(µ(k))û = fi(µ(k)) − K(µ(k))ũi,2

ũi = ũi,2 + û

i = 1, . . . , nRHS

POD-Based Iterative Solver



! Fewer high-fidelity simulations needed

! Accumulate snapshots     POD continually improves (cheaper)

! Optimization procedure

1. Calibrate ROM by high-fidelity simulation

2. Optimize using POD-Krylov ROM of desired accuracy

15Carlberg and Farhat

Optimization with POD-Krylov ROM

Iteration cost proportional to circle size

µ1

µ2

initial
design

optimal 
design

ROM
simulation

high-fidelity 
simulation

POD-Based Iterative Solver
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! Finite element model with 56,916 degrees of freedom
! 13 design variables (5 shape, 8 material)

Example:  V-22 Osprey wing panel

16Carlberg and Farhat

L

h1
h2Θ

t

POD-Based Iterative Solver



!  Problem Statement
! Given: 10 previously-queried designs and 2 new designs

! Compute: approximations                               satisfying    

   at the new designs

Example:  V-22 Osprey Wing Panel

17Carlberg and Farhat

Design A Design B

‖fi(µ) − K(µ)ũi‖2

‖fi(µ)‖2
< 10−2

ũi, i = 1, . . . , nRHS

POD-Based Iterative Solver



Results
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Error

convergence
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Simulation type Speedup (flops), Design A Speedup (flops), Design B

State equations 1 2.33 7.30

State equations + 
direct sensitivity 

analysis

14 1.78 1.71

End of POD 
approximation

IterationsIterations
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nRHS

nRHS = 1

POD-Based Iterative Solver

Design A Design B
PCG
POD-aug CG

PCG
POD-aug CG
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Conclusions

! A novel adaptive POD-Krylov reduced order model

! Compute approximations of any desired accuracy

! Efficiency due to choice of POD snapshots, weights, and norm

! 1.7x to 7.3x speedup over existing iterative methods

! Anticipate at least 3x faster structural design optimizations

! Future work

! Implement within an optimization algorithm

! Combine with other augmented Krylov approaches (deflation)

! Extend to systems with non-SPD matrices and 

   domain decomposition problems (FETI)

POD-Based Iterative Solver
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Thank You!

POD-Based Iterative Solver

Questions?

Reference: K. Carlberg and C. Farhat, ‘‘An Adaptive POD Krylov Reduced-Order Model for Structural 

Optimization,’’ 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon, Portugal, 

June 1–5, 2009.


